SANOG 14:
MPLS Network Design and Deployment Workshop Agenda
Srini Irigi, SPG TME, Cisco Systems, CCIE 6147
Jonny Martin, Internet Analyst, PCH
Workshop Structure
Day 1 Agenda

Day 1 Modules

<table>
<thead>
<tr>
<th>Why MPLS is needed ???</th>
</tr>
</thead>
<tbody>
<tr>
<td>How labels are advertised and stored</td>
</tr>
<tr>
<td>What protocols are used to distribute labels</td>
</tr>
<tr>
<td>Lab Overview & Initial Configuration Lab</td>
</tr>
<tr>
<td>LUNCH</td>
</tr>
<tr>
<td>LDP: LDP concepts, configuration and troubleshooting</td>
</tr>
<tr>
<td>MPLS Basics Configuration Lab</td>
</tr>
</tbody>
</table>
Day 2 Agenda

Day 2 Modules

<table>
<thead>
<tr>
<th>Basic concepts of VPNs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS L3VPNs Basic concepts</td>
</tr>
<tr>
<td>Route Distinguisher, VRF and Route-Target</td>
</tr>
<tr>
<td>Why MP-BGP is used between PE routers</td>
</tr>
<tr>
<td>L3VPN concepts and configuration</td>
</tr>
<tr>
<td>MPLS L3 VPNs Initial Configuration Lab</td>
</tr>
</tbody>
</table>

LUNCH

<table>
<thead>
<tr>
<th>PE-CE routing protocols such as static routing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hub and Spoke L3VPN concepts and configuration</td>
</tr>
<tr>
<td>BGP as a PE-CE routing protocol</td>
</tr>
<tr>
<td>MPLS L3 VPNs PE-CE Basics Configuration Lab</td>
</tr>
</tbody>
</table>
Day 3 Agenda

<table>
<thead>
<tr>
<th>Day 3 Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIP as a PE-CE protocol</td>
</tr>
<tr>
<td>Different ways of providing Inter-AS L3VPNs</td>
</tr>
<tr>
<td>Scalability in Inter-AS L3VPNs</td>
</tr>
<tr>
<td>MPLS L3 VPNs PE-CE Configuration Lab</td>
</tr>
<tr>
<td>LUNCH</td>
</tr>
<tr>
<td>Multi-VRF (VRF-lite) CE</td>
</tr>
<tr>
<td>Ways of providing Internet access with L3VPNs</td>
</tr>
<tr>
<td>MPLS L3VPN troubleshooting</td>
</tr>
<tr>
<td>MPLS L3 VPNs Advanced Configuration Lab</td>
</tr>
</tbody>
</table>
MPLS workshop

Configuring RIP as a Routing Protocol Between PE and CE Routers
Outline

Configuring RIP PE-CE Routing
Avoiding Routing Loops with RIP as PE-CE Protocol
Configuring RIP PE-CE Routing

• A routing context is configured for each VRF running RIP.

• RIP parameters have to be specified in the VRF.

• Some parameters configured in the RIP process are propagated to routing contexts (for example, RIP version).

• Only RIPv2 is supported.

• RIP may work but does not support VLSM (Variable Length Subnet Mask)
Configuring RIP PE-CE Routing (Cont.)

RIP Metric Propagation

```
router rip
  version 2
  address-family ipv4 vrf vrf-name
    version 2
      redistribute bgp as-number metric transparent
```

BGP routes must be redistributed back into RIP.

The RIP hop count has to be manually set for routes redistributed into RIP.

For end-to-end RIP networks, the following applies:

On the sending end, the RIP hop count is copied into the BGP multi-exit discriminator attribute (default BGP behavior).

On the receiving end, the metric transparent option copies the BGP MED into the RIP hop count, resulting in a consistent end-to-end RIP hop count. This hop count does not have the hops traversed via the MPLS VPN backbone.

When you are using RIP with other protocols, the metric must be manually set.
Configuring RIP PE-CE Routing (Cont.)

```
router rip
  version 2
  address-family ipv4 vrf Customer_ABC
  network 10.0.0.0
  redistribute bgp 12703 metric transparent

router bgp 12703
  address-family ipv4 vrf Customer_ABC
  redistribute rip
  no auto-summary
```
Loop Detection with RIP as PE-CE

RIP works with the following mechanisms for loop detection:

- Split Horizon
- Site Of Origin (SOO)
Avoiding Routing Loops: Split-horizon

VPN-IPv4 Update
RD:Net-1, Next-hop=PE-1
RT=xxx:xxx

RIP redistributes into BGP:
RIP metric -> BGP MED

RIP originates a route for Net-1
Avoiding Routing Loops: Split-horizon

BGP redistributes into RIP:
MED -> RIP hop count
Avoiding Routing Loops: Split-horizon

RIP adds hop-count: RIP increments hop count for PE-CE link
Avoiding Routing Loops: Split-horizon

CE-2 uses split horizon to prevent route reflection to PE-3.

PE-2 sees higher hop count from CE-2 than PE-1 so will not redistribute route back into BGP.
Avoiding Routing Loops: Site Of Origin

RIP originates a route for Net-1 with SOO=100:1.
Avoiding Routing Loops: Site Of Origin

MPLS-VPN Backbone

RIP route received on interface with Site-map having SOO=100:1

SOO=100:1
Avoiding Routing Loops: Site Of Origin

RIP route with SOO=100:1 redistributed into MP-BGP and advertised to PE-1

MPLS-VPN Backbone

PE-1

PE-2

RIP

CE-1

CE-2

SOO=100:1
Avoiding Routing Loops: Site Of Origin

PE-1 has SOO of 100:1 on interface to CE-1. Since SOO of route matches, so route for Net-1 not advertised from PE-1 to CE-1.
Summary

RIP can be used as a PE-CE routing protocol
RIP v2 should be used as it supports VLSM
RIP has loop detection mechanisms to prevent routing loops with complex connectivity models
MPLS VPN Implementation

Troubleshooting MPLS VPN
Outline

Overview
MPLS VPN Troubleshooting Preliminary steps
Verify the Routing Information Flow
Validating CE to PE Routing Information Flow
Validating PE to PE Routing Information Flow
Validating PE to CE Routing Information Flow
Verifying the Data Flow
Validating CEF Status
Validating the End-to-end Label Switched Path
Validating the LIB status
Lesson Summary
Preliminary steps in MPLS VPN Troubleshooting

- Perform basic MPLS troubleshooting:
 - Is CEF enabled?
 - Are labels for IGP routes generated and propagated?
 - Are large labeled packets propagated across the MPLS backbone (maximum transmission unit issues)?
Verifying the Routing Information Flow

Verify the routing information flow:

- Are CE routes received by a PE?
- Are routes redistributed into MP-BGP with proper extended communities?
- Are VPNv4 routes propagated to other PE routers?
- Is the BGP route selection process working correctly?
- Are VPNv4 routes inserted into VRFs on other PE routers?
- Are VPNv4 routes redistributed from BGP into the PE-CE routing protocol?
- Are IPv4 routes propagated to other CE routers?
Validating CE-to-PE Routing Information Flow

- Are CE routes received by PE?

 Verify with show ip route vrf *vrf-name* on PE-1.

 Perform traditional routing protocol troubleshooting if needed.
Validating PE-to-PE Routing Information Flow

- Are routes redistributed into MP-BGP with proper extended communities?

 Verify with `show ip bgp vpnv4 vrf vrf-name ip-prefix` on PE-1.

 Troubleshoot with `debug ip bgp` commands.
Validating PE-to-PE Routing Information Flow (Cont.)

- Are VPNv4 routes propagated to other PE routers?
 Verify with `show ip bgp vpnv4 all ip-prefix/length`.
 Troubleshoot PE-to-PE connectivity with traditional BGP troubleshooting tools.
Validating PE-to-PE Routing Information Flow (Cont.)

- Is the BGP route selection process working correctly on PE-2?

 Verify with `show ip bgp vvpn4 vrf vrf-name ip-prefix`.

 Change local preference or weight settings if needed.

 Do not change MED if you are using IGP-BGP redistribution on PE-2.
Validating PE-to-PE Routing Information Flow (Cont.)

- Are VPNv4 routes inserted into VRFs on PE-2?
 Verify with `show ip route vrf`.
 Troubleshoot with `show ip vrf detail`.
 Perform additional BGP troubleshooting if needed.
Validating PE-to-PE Routing Information Flow (Cont.)

- Are VPNv4 routes redistributed from BGP into the PE-CE routing protocol?

 Verify redistribution configuration—is the IGP metric specified?

 Perform traditional routing protocol troubleshooting.
Validating PE-to-CE Routing Information Flow

- Are VPNv4 routes propagated to other CE routers?
 Verify with show ip route on CE Spoke.
 Alternatively, does CE Spoke have a default route toward PE-2?
 Perform traditional routing protocol troubleshooting if needed.
Verifying the Data Flow

Verify proper data flow:

- Is CEF enabled on the ingress PE router interface?
- Is the CEF entry correct on the ingress PE router?
- Is there an end-to-end label switched path tunnel (LSP tunnel) between PE routers?
- Is the LFIB entry on the egress PE router correct?
Validating CEF Status

- Is CEF enabled on the ingress PE router interface?
 Verify with `show cef interface`.
 MPLS VPN needs CEF enabled on the ingress PE router interface for proper operation.
 CEF might become disabled because of additional features deployed on the interface.
Validating CEF Status (Cont.)

show cef interface

```
Router#show cef interface serial 1/0.20
Serial1/0.20 is up (if number 18)
  Internet address is 150.1.31.37/30
  ICMP redirects are always sent
  Per packet loadbalancing is disabled
  IP unicast RPF check is disabled
  Inbound access list is not set
  Outbound access list is not set
  IP policy routing is disabled
  Interface is marked as point to point interface
  Hardware idb is Serial1/0
  Fast switching type 5, interface type 64
  IP CEF switching enabled
  IP CEF VPN Fast switching turbo vector
  VPN Forwarding table "SiteA2"
  Input fast flags 0x1000, Output fast flags 0x0
  ifindex 3(3)
  Slot 1 Slot unit 0 VC -1
  Transmit limit accumulator 0x0 (0x0)
  IP MTU 1500
```
Validating CEF Status (Cont.)

- Is the CEF entry correct on the ingress PE router?

 Display the CEF entry with `show ip cef vrf vrf-name ip-prefix/length detail`.

 Verify the label stack in the CEF entry.
Validating the End-to-End Label Switched Path

- Is there an end-to-end label switched path tunnel (LSP tunnel) between PE routers?

 Check summarization issues—BGP next hop should be reachable as host route.

 Quick check—if time-to-live (TTL) propagation is disabled, the trace from PE-2 to PE-1 should contain only one hop.

 If needed, check LFIB values hop by hop.

 Check for MTU issues on the path—MPLS VPN requires a larger label header than pure MPLS.
Validating the LFIB Status

- Is the LFIB entry on the egress PE router correct?

 Find out the second label in the label stack on PE-2 with show ip cef vrf vrf-name ip-prefix detail.

 Verify correctness of LFIB entry on PE-1 with show mpls forwarding vrf vrf-name value detail.
Summary

MPLS troubleshooting can be divided into two main steps:

 Verify routing information flow
 Verify proper data flow

Routing information flow troubleshooting requires verification of end-to-end routing information propagation between CE routers.

Verification of the routing information flow should be done systematically, starting at the routing ingress CE and moving to the egress CE.

Verification of the data flow should be done systematically, starting at the data flow ingress CE and moving to the egress CE.
MPLS workshop

Multi-VRF CE (aka VRF-lite)
Agenda

- What is Multi-VRF/VRF Lite?
- Applications
- Implementation Example
- Limitations
- OSPF “capability vrf-lite”
- Conclusion
What is Multi-VRF CE?

- Multi-VRF CE architecture uses the VRF concept to support multiple (overlapping and independent) routing tables (and forwarding tables) per customer.
- Not a feature but an application based on VRF implementation.
- Any routing protocol supported by normal VRF can be used in a Multi-VRF CE implementation.
- The CE supports traffic separation between customer networks.
- There is no MPLS functionality on the CE, no label exchange between the CE and PE.
What is Multi-VRF CE

Take the existing PE VRF Functionality…

MP-iBGP

IGP and Label Switching

eBGP, OSPF, RIPv2, or Static
What is Multi-VRF CE

...And Remove the MPLS cloud
What is Multi-VRF CE

Put it at the customer site and call it a Multi-VRF CE
Multi-VRF CE - Extending MPLS-VPN

Sub-Interface Link – Any Interface type that supports Sub Interfaces, FE-VLAN, Frame Relay, ATM VC’s
Multi-VRF CE - a standalone Virtual-router!

Local Inter-VRF routing is supported
Multi-VRF/VRF-Lite CE Architecture

Site Network
Each customer network uses independent IGP.

Customer A
Site A1
149.27.2.0

Customer B
Site B1
149.27.2.0

Customer Edge
Maintains one VRF per VPN
Ingress interface used to determine appropriate VRF

Provider Edge
Maintains one VRF per attached VPN
Ingress interface used to determine appropriate VRF

- Site A1 communicates with Site A2
- Site B1 communicates with Site B2
- VRF X on CE1 is connected to VRF A on PE1
- VRF Y on CE1 is connected to VRF B on PE1
- VRF C on CE2 is connected to VRF B on PE2
- VRF D on CE2 is connected to VRF A on PE2

Customer B
Site B2
149.27.1.0

Customer A
Site A2
149.27.1.0
Data Forwarding in MPLS-VPN with Multi-VRF CE
Multi-VRF CE Architecture

- Enhanced branch office capability
- CE routers use VRF interfaces VLAN-like configuration on the customer side
- CE router can only configure VRF interfaces and support VRF routing tables
- Use using a Multi-vrf CE is an alternative to separate CE routers per each client’s organization
Multi-VRF CE Architecture: Replaces Separate CE Routers
Multi-VRF CE Architecture: Operational Model

1. CE-VRF learns Client 1’s VPN Green routes from a sub-interface of the Fast Ethernet interface directly attached to CE-VRF. CE-VRF then installs these routes into VRF Green.

2. PE 1 learns Client 1’s VPN Green routes from the CE-VRF and installs them into VRF Green.

Local VPN Blue routes from Client 4 are not associated with VPN Green and are not imported into VRF Green.
Applications: Two Examples

- Internet and VPN Service Using the Same CE – solution is attractive for small businesses that do not want to install separate CE routers for each service
- Implement Multiple VPNs in a customer site using a single router
Application 1: Internet Services and VPN Services Using A Single CE

Default Route injected into VPN
Data forwarding Path from Regional Sites to Internet
Frame Relay Link

Central Site
Regional Site1
Regional Site2
Internet Gateway
Internet

MPLS Network
VPN - PE1
VPN - PE2
VPN - PE3

Multi-VRF CE

Data forwarding Path from Regional Sites to Internet
Default Route injected into VPN

Application 2: Multiple VPNs in a Customer Site Using a Single Router

- Objective: Provide building connectivity via Multi-VRF CE. Multiple departments or companies sharing a building need to be isolated from each other (e.g. financial departments).
Application 2: Overview
Application 2: Basic Setup

- Inter-site connectivity policies
 All Customer Routers can communicate with Remote CE’s but not with each other.

- All Traffic off 2611-CE-4 is segmented into 5 separate VRFs (labeled ce_vrf1-5)

- 3640-PE-STHEAST-3 uses OSPF as the routing protocol to exchange updates with 2611-CE4, but other routing protocols may be used as well

- All other hosts off 2611-CE4 use a combination of OSPF, EBGP, RIPv2 and static routes
Application 2: Summary Configuration-3640-PE-STTHEAST-3

ip vrf v11
rd 11:1
route-target export 11:1
route-target import 11:1

interface Serial2/0:0
description E1 connection to Multi-VRF CE
no ip address
capsulation frame-relay

! interface Serial2/0:0.1 point-to-point
description PE to Multi-VRF CE connection
ip vrf forwarding v11
ip address 220.1.65.5 255.255.255.252
frame-relay interface-dci 21

router ospf 11 vrf v11
log-adjacency-changes
area 11 virtual-link 220.1.65.6
##VL if CE is not configured with capability-vrf
redistribute bgp 30000 subnets

Please keep in mind that “capability-vrflite” knob is not needed on the PE.
Application 2: Summary Configuration - Multi-VRF CE

```
ip vrf ce_vrf1  
rd 81:81  
route-target export 81:1  
route-target import 81:1  
#Required if you want to do Extranet only  
!  
interface Serial0/0.1 point-to-point  
description Multi-VRF CE to PE connection 1  
ip vrf forwarding ce_vrf1  
ip address 220.1.65.6 255.255.255.252  
frame-relay interface-dlci 21  
!  
interface Ethernet0/1.11  
description Multi-VRF CE to host 1 (dup addr)  
encapsulation dot1q 11  
ip vrf forwarding ce_vrf1  
ip address 192.1.1.1 255.255.255.0  
!  
router ospf 11 vrf ce_vrf1  
log-adjacency-changes  
area 11 virtual-link 220.1.65.5  
capability vrf-lite  
[after 12.0(21)ST]  
network 192.1.1.0 0.0.0.255 area 0  
network 220.1.65.4 0.0.0.3 area 11
```
OSPF “Capability vrf-lite”

- To suppress PE-specific checks on a CE-vrf-lite router (OSPF ‘DOWN’ Bit used only in VPNs)
- These checks are required to prevent loops when PE is performing mutual redistribution between OSPF and BGP
- Reference: CSCds82178
- For the Multi-VRF CE these checks may be turned off:

```plaintext
router ospf 100 vrf ce_vrf1
capability vrf-lite
```
OSPF “Capability vrf-lite”

- When the OSPF process is associated with the VRF, several checks are performed when LSAs are received:
 - If Type-3 LSA is received, DN bit is checked. If DN bit is set, Type-3 LSA is not considered during the SPF
 - If Type-5/7 LSA is received and the Tag in the LSA is equal to the VPN-tag, Type-5/7 LSA is not considered during the SPF
- These checks are needed to prevent loops when PE is performing a mutual redistribution between OSPF and BGP.
3640-PE-STHEAST-3#sh ip route vrf v45
..........<snip>......

Gateway of last resort is not set

 220.45.53.0/30 is subnetted, 1 subnets
C 220.45.53.4 is directly connected, Serial2/0:0.5
 200.45.72.0/30 is subnetted, 1 subnets
B 200.45.72.4 [200/0] via 10.13.1.72, 00:39:51

After the CE OSPF neighbor comes UP...

3640-PE-STHEAST-3#sh ip route vrf v45
..........<snip>......

Gateway of last resort is not set

 O IA 200.41.1.0/24 [110/84] via 220.45.53.6, 00:00:03, Serial2/0:0.5
 220.45.53.0/30 is subnetted, 1 subnets
C 220.45.53.4 is directly connected, Serial2/0:0.5
 200.45.72.0/30 is subnetted, 1 subnets
B 200.45.72.4 [200/0] via 10.13.1.72, 00:40:28
 30.0.0.0/24 is subnetted, 1 subnets
O E2 30.45.106.0 [110/20] via 220.45.53.6, 00:00:03, Serial2/0:0.5
2611-CE-4#sh ip ospf 45 database summary
 OSPF Router with ID (200.45.72.4) (Process ID 45)
 Summary Net Link States (Area 45)
Routing Bit Set on this LSA
LS age: 637
Options: (No TOS-capability, DC, Downward) <<< Downward => Down (DN) bit set by PE
LS Type: Summary Links(Network)
Link State ID: 200.45.72.4 (summary Network Number)
Advertising Router: 220.45.53.5
LS Seq Number: 800002DB
Checksum: 0x41DC
Length: 28
Network Mask: /24
 TOS: 0 Metric: 10

3640-PE-STHEAST-3#sh ip os 45 da ex
 OSPF Router with ID (220.45.53.5) (Process ID 45)
 Type-5 AS External Link States
LS age: 430
Options: (No TOS-capability, DC)
LS Type: AS External Link
Link State ID: 200.41.72.4 (External Network Number)
Advertising Router: 220.45.53.5
LS Seq Number: 80000003
Checksum: 0x5C5F
Length: 36
Network Mask: /30
 Metric Type: 2 (Larger than any link state path)
 TOS: 0
 Metric: 1
Forward Address: 0.0.0.0
External Route Tag: 3489690928
Application 2: Summary Configuration
Customer 1 Router

interface Ethernet0/1.11
description Host to Multi-VRF CE1 (dup addr)
encapsulation dot1Q 11
ip address 192.1.1.2 255.255.255.0
!
router ospf 1
log-adjacency-changes
network 192.1.1.0 0.0.0.255 area 0

<table>
<thead>
<tr>
<th>int to PE</th>
<th>PE VRF</th>
<th>CE VRF</th>
<th>int to Cust</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>serial0/0.1</td>
<td>v11</td>
<td>ce_vrf1</td>
<td>eth0/1.11</td>
<td>OSPF</td>
</tr>
<tr>
<td>serial0/0.2</td>
<td>v12</td>
<td>ce_vrf2</td>
<td>eth0/1.12</td>
<td>RIP</td>
</tr>
<tr>
<td>serial0/0.3</td>
<td>v13</td>
<td>ce_vrf3</td>
<td>eth0/1.13</td>
<td>BGP</td>
</tr>
<tr>
<td>serial0/0.4</td>
<td>v14</td>
<td>ce_vrf4</td>
<td>eth0/1.14</td>
<td>Statics</td>
</tr>
<tr>
<td>serial0/0.5</td>
<td>v15</td>
<td>ce_vrf5</td>
<td>eth1/0</td>
<td>OSPF</td>
</tr>
</tbody>
</table>
Application 2: Verifying Connectivity-Show Commands Remote CE

Remote-CE# sh ip route vrf v15 200.15.44.4
Routing entry for 200.15.44.4/30
Known via "connected", distance 0, metric 0 (connected, via interface)
Redistributing via rip
Advertised by rip
Routing Descriptor Blocks:
* directly connected, via Serial4/3.15
 Route metric is 0, traffic share count is 1
Application 2: Verifying Connectivity-
Show Commands GSR-PE-WEST-2

GSR-PE-WEST-2# sh ip route vrf v15 200.15.44.4
Routing entry for 200.15.44.4/30
 Known via "connected", distance 0, metric 0 (connected, via interface)
 Redistributing via bgp 30000
 Advertised by bgp 30000
 Routing Descriptor Blocks:
 * directly connected, via Serial1/0/7.15
 Route metric is 0, traffic share count is 1
Application 2: Verifying Connectivity - Show Commands 3640-PE-STHEAST3

3640-PE-STHEAST-3# sh ip route vrf v15 200.15.44.4
Routing entry for 200.15.44.4/30
 Known via "bgp 30000", distance 200, metric 0, type internal
 Redistributing via ospf 15
 Advertised by ospf 15 subnets
 Last update from 10.13.1.44 00:17:10 ago
 Routing Descriptor Blocks:
 * 10.13.1.44 (Default-IP-Routing-Table), from 10.13.1.48, 00:17:10 ago
 Route metric is 0, traffic share count is 1
 AS Hops 0
Application 2: Verifying Connectivity-Show Commands Multi-VRF CE

2621-CE-4#sh ip route vrf ce_vrf5 200.15.44.4
Routing entry for 200.15.44.4/30
Known via “ospf 45” distance 100, metric 1
Tag Complete, Path Length = 1, AS 30000, Type extern 2, forward metric 74
Last update from 220.45.65.21 on Serial 0/0.5, 11:03:35 ago
Routing Descriptor Blocks:
* 200.15.44.4, from 220.45.65.21, 11:03:35 ago, via Serial 0/0.5
 Route metric is 1, traffic count is 1
Application 2: Verifying Connectivity-
Show Commands Customer 5 Router

Customer-5# sh ip route | include 200.15.44.4
O E2 200.15.44.4 [110/1] via 192.1.1.1, 00:16:16, Ethernet1/0

Customer-5# sh ip route 200.15.44.4
Routing entry for 200.15.44.4/30
Known via "ospf 5", distance 110, metric 1
Tag Complete, Path Length == 1, AS 1, , type extern 2, forward metric 84
Last update from 192.1.1.1 on Ethernet1/0, 00:02:12 ago
Routing Descriptor Blocks:
* 192.1.1.1, from 220.1.65.21, 00:02:12 ago, via Ethernet1/0
 Route metric is 1, traffic share count is 1
Platforms and IOS

- Cisco 2600
- Cisco 3640
- Cisco 3660
- Cisco 7200
- Cisco 7500
- Supported in 12.2 - 12.2(4)T
IOS feature set and memory requirements

- Note that a Plus feature set is required for Low-end routers on Mainline versions.
- Maximum DRAM memory for each platform is recommended.
Limitations

- Scalability is limited by the platform max interfaces, memory for routes and raw processing ability

 2600 cannot handle full Internet Routing Table (except 2650)

 3640 may be able handle it from one BGP peer if you use a smaller IOS version but risky during network instability. With 96MB I could get 141K Internet routes with 17ST5, but not with 21ST due to BGP changes

- Actual performance may vary based on traffic load, number of routes and routing processes

- IPSec with Multi-VRF CE currently not supported but is under investigation
Conclusions

- Multi-VRF/VRF-Lite offers the following benefits:

 Only one CE router is needed facilitating provisioning and network management rather than a multiple CE router solution

 CE router has VRF functionality without full PE functionality to provide BGP routing tables

 Note scalability factors

 Less routing updates to manage

 Overlapping Customer address spaces

 Can co-exist with an MPLS-based network but no MPLS enabled on CE

 Note applicability example for branch offices with multiple networks
MPLS workshop

MPLS VPN Inter-Provider Solutions
Agenda

- Inter-Provider Connectivity Options
- Scaling Inter-Provider Solutions
- Filtering & Route Distribution Mechanisms
- Distribution of Traffic Load between Providers
VPN Client Connectivity

- VPN sites may be geographically dispersed requiring connectivity to separate MPLS VPN Service Providers

- Transit between VPN sites may pass through multiple providers MPLS VPN backbones this implies exchange of VPN routing information between providers

- Referred to as Multi-Provider or Inter-Provider VPN
VPN Client Connectivity

VPN Sites attached to different Service Providers

VPN-v4 update:
RD:1:27:149.27.2.0/24,
NH=PE-1
RT=1:231, Label=(28)

BGP, OSPF, RIPv2
149.27.2.0/24,NH=CE-1

How to distribute routes between SPs?

AS #1

CE-1

PE-1

VPN-A

149.27.2.0/24

AS #2

CE

VPN-A

VPN-A VRF

Import routes with route-target 1:231

Cisco Systems, Inc. All rights reserved. Cisco Confidential
VPNv4 Distribution Options

Many options for distribution of VPNv4 prefix information
Back-to-back VRF Connectivity

- **MPLS VPN providers exchange routes across VRF interfaces**

 VRF represents a particular VPN client

- **Each provider PE router treats the other as a CE**

 although both provider interfaces associated with a VRF

- **PE routers are gateways used for VPNv4 route exchange**

- **PE-ASBR to PE-ASBR link may use any supported PE-CE routing protocol**

 currently OSPF, BGP-4, RIPv2 and static
Back-to-back VRF Connectivity

VRF to VRF Connectivity between PE-ASBRs

One logical interface & VRF per VPN client
Back-to-back VRF Connectivity

VRF to VRF Connectivity between PE-ASBRs
Back-to-Back VRF Connectivity

ASBR VRF and BGP config

ip vrf green
rd 1:1
route-target both 1:1
!
Router bgp x
Address-family ipv4 vrf green
neighbor 1.1.1.x activate

Note: ASBR must already have MP-iBGP session with iBGP neighbors such as RRs or PEs.
Back-to-back VRF Connectivity

• Scalability is an issue with many VPNs
 One VRF & logical interface required per VPN client;
 Gateway PE-ASBR must hold ALL routing information

• PE-ASBR must filter & store VPNv4 prefixes
 Plus import into VRFs thus increasing MPLS, CEF & routing table memory

• No MPLS required between providers
 Standard IP between gateway PE-ASBRs;
 No exchange of routes using MP-eBGP
MP-eBGP between ASBRs for VPNv4

• New CLI “no bgp default route-target filter” is needed on the ASBR to accept VPNv4 prefixes in the absence of VRFs

• PE-ASBRs exchange routes directly using BGP VPNv4 AF
 MP-eBGP for VPNv4 prefix exchange. No LDP required

• eBGP session with next-hop set to advertising PE-ASBR
 Next-hop and labels are rewritten when advertised across the Inter-Provider MP-eBGP session

• PE-ASBR stores all VPN routes which must be exchanged
 But only in the BGP table
 Labels are populated into the LFIB of the PE-ASBR
MP-eBGP between ASBRs for VPNv4

- Receiving Gateway PE-ASBRs may allocate new label if desired
 Controlled by configuration of next-hop-self (default is on)
- Receiving PE-ASBR will automatically create a /32 host route for its PE-ASBR neighbor
 Which must be redistributed into receiving IGP if next-hop-self is NOT in operation;
 /32 not created if iBGP session, eBGP multihop or if MP-eBGP exchange of VPNv4 capability not negotiated with neighbor
MP-eBGP between ASBRs for VPNv4 Control Plane

- **MP-iBGP update:**
 - RD: 1:27: 10.1.1.0/24, NH=PE-1
 - RT=1:1, Label=(40)

- **MP-eBGP update:**
 - RD: 1:27: 10.1.1.0/24, NH=ASBR-1
 - RT=1:1, Label=(20)

- **MP-iBGP update:**
 - RD: 1:27: 10.1.1.0/24, NH=ASBR-2
 - RT=1:1, Label=(30)

Network Diagram:

- **ASBR-1**
- **ASBR-2**
- **PE-1**
- **CE-2**
- **CE-3**

Routes:
- **10.1.1.0/24**, NH=CE-2
- **10.1.1.0/24**, NH=PE-2

Protocols:
- BGP, OSPF, RIPv2

Note: The diagram shows the flow of routes and labels between the different devices.
MP-eBGP between ASBRs for VPNv4 Forwarding Plane

Pros

• More scalable.
 Only one interface between ASBRs routers
 No VRF configuration on ASBR.
 Less memory consumption (no RIB/FIB memory)
• MPLS label switching between providers
 Still simple, more scalable & works today

Cons

• Automatic Route Filtering must be disabled
 But we can apply BGP filtering.
• ASBRs are still required to hold VPN routes
MP-eBGP between ASBRs for VPNv4

IOS Configuration

ASBR MP-eBGP Configuration

```
Router bgp x
no bgp default route-target filter
neighbor 1.1.1.x remote-as y
! address-family vpnv4
neighbor 1.1.1.x activate
neighbor 1.1.1.x send-community extended
```

Note: ASBR must already have MP-iBGP session with iBGP neighbors such as RRs or PEs.
Multihop MP-eBGP for VPNv4

- MPLS VPN providers exchange VPNv4 prefixes via their Route Reflectors
 Requires Multihop MP-eBGP (VPNv4 routes)
- Next-hop-self MUST be disabled on Route Reflector
 Preserves next-hop and label as allocated by the originating PE router
- Providers exchange IPv4 routes with labels between directly connected ASBRs using eBGP
 Only PE loopback addresses exchanged as these are BGP next-hop addresses
Multihop MP-eBGP for VPNv4

Multihop MP-eBGP VPNv4 prefix exchange between Route Reflectors
Multihop MP-eBGP for VPNv4 Control Plane

VPN-v4 update:
RD:1:27:152.12.4.0/24, NH=PE-1
RT=1:222, Label=(L1)

VPN-v4 update:
RD:1:27:152.12.4.0/24, NH=PE-1
RT=1:222, Label=(L1)

VPN-v4 update:
RD:1:27:152.12.4.0/24, NH=PE-1
RT=1:222, Label=(L1)

BGP, OSPF, RIPv2
152.12.4.0/24,NH=CE-2

Network=PE-1
NH=ASBR-2
Label=(L3)

Network=PE-1
NH=ASBR-1
Label=(L2)

Network=PE-1
NH=ASBR-2
Label=(L3)

VPN-B 152.12.4.0/24

PE-1

CE-2

PE-2

CE-3

VPN-B

ASBR-1

ASBR-2

RR-1

RR-2
Multihop MP-eBGP for VPNv4
Forwarding Plane
Multihop MP-eBGP for VPNv4
IOS Configuration

RR Configuration

```
router bgp x
neighbor <RR-y> remote-as y
neighbor <RR-y> ebgp-multihop
neighbor <RR-y> update loopback 0
!
address-family vpnv4
neighbor <RR-y> activate
neighbor <RR-y> send-com extended
neighbor <RR-y> next-hop-unchanged
```

ASBR Configuration

```
router ospf z
redistribute bgp 1 subnets
!
router bgp y
neighbor < ASBR-x > remote-as x
!
address-family ipv4
Network <PEx> mask 255.255.255.255
Network <RRx> mask 255.255.255.255
neighbor < ASBR-x > activate
neighbor < ASBR-x > send-label
```
Multihop MP-eBGP for VPNv4

- Improves the scalability of route exchange
 - Eliminates the requirement to hold VPNv4 routes on the ASBRs;
 - Route reflectors already store VPNv4 prefix information
- Packets travel with 3 level label stack
 - <LDP IGP, BGP learnt label for Next-hop, VPN label>
- Advertising PE addresses to another AS may not be acceptable to few providers.
Non-VPN Transit Provider

• Two MPLS VPN providers may exchange routes with one or more third party
 Which is a non-VPN transit backbone just running MPLS

• Multihop MP-eBGP deployed between edge providers
 With the exchange of BGP next-hops via the transit provider;
 BGP-4 + labels required

• Providers may use the same AS# within each region or different AS#
 Transit network is NOT part of the AS path
Non-VPN Transit Provider

- Non-VPN MPLS Transit Backbone
 - Multihop MP-eBGP or MP-iBGP for VPNv4
 - eBGP IPv4 + Labels

- MPLS VPN Provider #1
 - ASBR-1
 - RR-1
 - PE
 - CE-2

- MPLS VPN Provider #2
 - ASBR-2
 - Non-VPN MPLS Transit Backbone
 - ASBR-3
 - ASBR-4
 - PE
 - CE-3

- NO next-hop-self

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential
Non-VPN Transit Provider
Control Plane

- **BGP, OSPF, RIPv2**
- **Network=PE-1**
 - **NH=ASBR-1**
 - **Label=(L2)**
- **Network=PE-1**
 - **NH=ASBR-2**
 - **Label=(L3)**
- **Network=PE-1**
 - **NH=ASBR-3**
 - **Label=(L4)**
- **Network=PE-1**
 - **NH=ASBR-4**
 - **Label=(L5)**

152.12.4.0/24, NH=CE-2

VPN-B

RR-1

ASBR-1

ASBR-2

ASBR-3

ASBR-4

CE-2

CE-3

VPN-B

PE
Non-VPN Transit Provider Forwarding Plane

- **Non-VPN Transit Provider**
- **Forwarding Plane**

CE-2
- 152.12.4.0/24
- BGP, OSPF, RIPv2
- 152.12.4.0/24, NH=CE-2

PE
- LDP PE-1 Label
- L1 152.12.4.1

ASBR-1
- L2 152.12.4.1

ASBR-2
- Non-VPN MPLS Transit Backbone
- LDP PE-ASBR-2 Label
- L3 152.12.4.1

ASBR-3
- L4 152.12.4.1

ASBR-4
- L5 152.12.4.1

RR-1
- L1 152.12.4.1

RR-2
- L1 152.12.4.1

VPN-B
- L1 152.12.4.1

VPN-B
- 152.12.4.0/24
Scaling Inter-Provider Solutions: PE-ASBR Memory Consumption

VPNv4 MP-iBGP Sessions

No. VPN Routes

Memory Consumption

PE-ASBR Memory
PE-ASBR Memory Scaling

• Potentially large amounts of VPN routing information
 That may or may not need to be carried between providers;
 Large percentage will be local VPN prefixes
 This is specially true for (1) back-back vrf (2) MP-eBGP on PE-ASBR

• PE-ASBRs must hold relevant VPN routing information
 But only Inter-AS VPN prefix details

• Two methods available to aid scaling
 ARF with local VRF import (default)
 ARF disabled with inbound filtering
ARF with local VRF import

• Automatic Route Filtering (ARF) for non-imported routes
 If RT does not match locally configured import statement then drop the route

• Each PE-ASBR holds VRFs for Inter-AS VPNs
 And imports routes based on route-target values

• PE-ASBR acts like normal PE router
 Although also services external MP-BGP sessions
ARF with local VRF import

BGP, CEF, MPLS & RT Memory per-VRF
ARF disabled with inbound filtering

• Automatic Route Filtering (ARF) enabled by default
 Therefore if no VRFs are configured then ALL VPN routes are dropped by the PE-ASBR

• Automatic Route Filtering may be disabled
 Through use of no default BGP route-target filter command within the BGP configuration

• Disabling of ARF will cause ALL routes to be accepted by the PE-ASBR, when it has no VRFs
 Which implies filtering must occur to drop unwanted routes
ARF disabled with inbound filtering

```
router bgp 1

! no bgp default route-target filter

! address-family vpnv4
  neighbor 154.27.0.134 activate
  neighbor 154.27.0.134 send-community extended
  neighbor 154.27.0.134 route-map vpn-routes-filter in

MP-iBGP VPNv4

NO Automatic Route Filtering

NO per-VRF CEF or RT Memory, only BGP & LFIB
```
Filtering & Route Distribution Mechanisms
Inter-AS Filtering Points

1. Inbound filtering on PE-ASBR
2. Outbound filtering per-peer
3. Automatic route filtering inbound
4. Inbound filtering per-peer OR rr-group
5. Automatic route filtering inbound

Various Filtering Points
Inbound filtering on PE-ASBR

Blue VPN routes discarded

BGP Memory

LFIB Memory

NO ARF – Filter inbound on per-peer basis

router bgp 1
!
no bgp default route-target filter
!
address-family vpnv4
 neighbor 154.27.0.134 activate
 neighbor 154.27.0.134 send-community extended
 neighbor 154.27.0.134 route-map vpn-routes-filter in
!
ip extcommunity-list 1 permit rt 214:27 rt 214:94
!
route-map vpn-routes-filter permit 10
 match extcommunity 1
Outbound filtering on PE-ASBR

```plaintext
address-family vpnv4
    neighbor 157.27.0.132 route-map MPeBGP-2 out
    neighbor 149.27.0.142 route-map MPeBGP-3 out
! route-map MPeBGP-2 permit 10
    match extcommunity 214:27
! route-map MPeBGP-3 permit 10
    match extcommunity 214:94
```
Downstream RT allocation

- Both inbound & outbound filtering restrictive with large number of VPN clients
 As each RT must be known and the filters must be established

- Changes to VPN client membership will cause configuration changes on PE-ASBRs
 As each filter must be updated to reflect addition/deletion of VPN clients

- With large number of clients a simplified filtering scheme is needed
 Provided with “Downstream provider RT allocation” scheme
Downstream RT allocation

address-family vpnv4
 neighbor 154.27.0.134 activate
 neighbor 154.27.0.134 send-community extended
 neighbor 154.27.0.134 route-map asbr-routes-filter in
 neighbor 157.27.0.132 route-map MPeBGP-2 out
 neighbor 149.27.0.142 route-map MPeBGP-3 out

!
ip extcommunity-list 1 permit rt 129:101 rt 129:102
ip extcommunity-list 16 permit rt 129:101
ip extcommunity-list 17 permit rt 129:102

route-map asbr-routes-filter permit 10
 match extcommunity 1
!
route-map MPeBGP-2 permit 10
 match extcommunity 16
!
route-map MPeBGP-3 permit 10
 match extcommunity 17
Distribution of Traffic Load between Providers

- **Balancing of Inter-AS traffic is an important issue**
 For distribution of traffic and redundancy of network design

- **All Inter-AS traffic must pass through PE-ASBRs**
 As BGP next-hops are reachable via these routers

- **Multiple links provide traffic distribution**
 But do not provide redundancy due to single point of failure of the PE-ASBR
VPN Client Traffic Flow

VPN Client to VPN Client traffic flow via Inter-AS Link

VPN-v4 update: RD:1:27:152.12.4.0/24, NH=CE-2, RT=1:222, Label=(L1)

ALL Inter-AS traffic flows across PE-ASBR-2 to PE-ASBR-1 link

BGP, OSPF, RIPv2
152.12.4.0/24, NH=CE-2

VPN-B
152.12.4.0/24
Load Balancing between PE-ASBRs

Load Balancing across multiple PE-ASBR links
Redundant PE-ASBR Connections

Inter-site traffic flow

Redundant PE-ASBR used purely for backup
Redundant PE-ASBR Load Balancing

Load balancing PE-ASBR links without Route Reflectors

iBGP multipath support provides ability to load balance between two exit points

VPN-v4 update:
RD:1:27:152.12.4.0/24, NH=PE-1, RT=1:222, Label=(L1)

Network 152.12.4.0/24
BGP NH=PE-ASBR-2
PE-ASBR-4

VPN-v4 updates:
NH=PE-ASBR-1

VPN-v4 updates:
NH=PE-ASBR-3

VPN-v4 updates:
NH=PE-ASBR-4
Internet Access from a VPN
Overview

- Leaking Between VPN and Global Backbone Routing
- Separating Internet Access from VPN Service
- Internet Access Backbone as a Separate VPN
- Internet Access with VRF Aware NAT
Leaking Between VPN and Global Backbone Routing
Internet Access Through Global Routing

- Two implementation options:

Internet access is implemented via separate interfaces that are not placed in any VRF (traditional Internet access setup)

Packet leaking between a VRF and the global table is achieved through special configuration commands
Packet leaking between a VRF and a global routing table is based on two IOS features:

A VRF static route can be defined with a global next-hop. This feature achieves leaking from a VRF toward a global next-hop.

A global static route can be defined pointing to a connected interface that belongs to a VRF. This feature achieves leaking from a global routing table into VPN space.
Configuring Packet Leaking

Router(config)#

```
ip route vrf name prefix mask next-hop global
```

- Configures a VRF static route with a global next-hop
- Packets matched by this static route are forwarded toward a global next-hop and thus leak into global address space

Router(config)#

```
ip route prefix mask interface
```

- Configures a global static route that can point to an interface in VRF
- Globally-routed packets following this entry will be sent toward a CE router (into a VPN)
Designing Internet Access Through Packet Leaking

- A public address is assigned to an Internet/VPN customer
- A global static route for an assigned address block is configured on the PE router
 The static route has to be redistributed into BGP to provide full connectivity to the customer
- A default route toward a global Internet exit point is installed in the customer VRF
 This default route is used to forward packets to unknown destinations (Internet) into the global address space
Connectivity from the Customer to the Internet

- A default route is installed into the VRF pointing to a global Internet gateway

 Warning: Using a default route for Internet routing does NOT allow any other default route for intra-VPN routing

- The default route is not part of any VPN

 A single label is used for packets forwarded toward the global next-hop

 The label used for packet forwarding is the IGP label (TDP/LDP-assigned label) corresponding to the IP address of the global next-hop
VRF-Specific Default Route

- The Internet gateway specified as the next-hop in the VRF default route need NOT to be directly connected
- The next-hop can be in the upstream AS to achieve redundancy
- Different Internet gateways can be used for different VRFs
An Example of Internet Access Through Packet Leaking

```
interface Serial0
ip address 192.168.10.1 255.255.255.0
ip vrf forwarding VPN-A
!
Router bgp 100
no bgp default ipv4-unicast
network 171.68.0.0 mask 255.255.0.0
neighbor 192.168.1.1 remote 100
neighbor 192.168.1.1 activate
neighbor 192.168.1.1 next-hop-self
neighbor 192.168.1.1 update-source loopback0
!
address-family ipv4
neighbor 192.168.1.2 activate
exit-address-family
!
address-family vpnv4
neighbor 192.168.1.2 activate
exit-address-family
!
ip route 171.68.0.0 255.255.0.0 Serial0
ip route vrf VPN-A 0.0.0.0 0.0.0.0 192.168.1.1 global
```
Packet Leaking in Action

Internet

IP packet
D=cisco.co
m

IP packet
D=cisco.co
m

192.168.1.1
PE-IG

192.168.1.2
PE

Serial0

Site-1

Site-2

Network 171.68.0.0/16

Global Table and LFIB
- 192.168.1.1/32 Label=3
- 192.168.1.2/32 Label=5
- ...

Site-2 VRF
- 0.0.0.0/0 192.168.1.1 (global)
- Site-1 routes
- Site-2 routes
Redundant Internet Access with Packet Leaking

- Several VRF default routes can be used with different next-hops
 This setup will survive failure of the Internet gateway, not the failure of its upstream link

- Global next-hop can be in an upstream autonomous system
 This setup yields best redundancy because it tests availability of the whole path from PE router to the upstream autonomous system

Drawback: local Internet service stops working if the upstream autonomous system is not reachable
Limitations of Packet

- **Drawbacks:**
 - Internet and VPN packets are mixed on the same link; security issues arise
 - Packets moving toward temporarily unreachable VPN destinations might leak into the Internet
 - A global BGP session between a PE and a CE router needed for full Internet routing exchange is hard to configure

- **Benefits:**
 - A PE router does not need Internet routes, only an IGP route toward the Internet gateway
Separating Internet Access from VPN Service
Designing Internet Access Separated from VPN

- Customer Internet access is implemented over different interfaces than VPN access is:
 - Traditional Internet access implementation model
 - Requires separate physical links or separate subinterfaces
 - Maximum design flexibility; Internet access is totally independent from MPLS VPN
Subinterfaces

- Separate physical links for VPN and Internet traffic are sometimes not acceptable because of high cost
- Subinterfaces can be used over WAN links using Frame Relay or ATM encapsulation (including DSL)
- A tunnel interface could be used; however:
 - Tunnels are not VRF-aware: VPN traffic must run over a global tunnel
 - This setup could lead to security leaks because global packets could end up in VPN space
An Example of Internet Access Through a Dedicated Subinterface

```plaintext
ip vrf VPN-A
rd 100:1
route-target both 100:1 
!
Interface Serial0
no ip address 
!
Interface Serial0.1
ip address 192.168.20.1 255.255.255.0
ip vrf forwarding VPN-A 
!
Interface Serial0.2
ip address 171.68.10.1 255.255.255.0 
!
Router bgp 100
no bgp default ipv4-unicast
neighbor 192.168.1.1 remote 100
neighbor 192.168.1.1 activate
neighbor 192.168.1.1 next-hop-self
neighbor 192.168.1.1 update-source loopback0
neighbor 171.68.10.2 remote 502
!
address-family ipv4 vrf VPN-A
neighbor 192.168.20.2 remote-as 502
neighbor 192.168.20.2 activate
exit-address-family 
!
address-family vpnv4
neighbor 192.168.1.2 activate
exit-address-family
```
Internet Access Through a Dedicated Subinterface - Traffic Flow

PE-IG

Internet

192.168.1.1
PE
Serial0.1
Serial0.2

192.168.1.2
PE
Serial0.1
Serial0.2

Site-1

Site-2

Network 171.68.0.0/16

Internet routes ---+ 192.168.1.1
192.168.1.1, Label=3

PE Global Table

IP packet
D=cisco.co
m

Label = 3

IP packet
D=cisco.co
m

CE routing table

Site-2 routes ----> Serial0.1
Internet routes ----> Serial0.2

IP packet
D=cisco.co
m

D=cisco.co
m
Limitations of Separate Internet Access

- **Drawbacks:**
 - Requires separate physical link or specific WAN encapsulation
 - PE routers must be able to perform Internet routing (and potentially carry full Internet routing)
 - Wholesale Internet access or Central Firewall service cannot be implemented with this model
 - PE router has internet as well as VPN routes. A lot of ISPs do not like this idea due to security reasons

- **Benefits:**
 - Well-known model
 - Supports all customer requirements
 - Allows all Internet services implementation, including a BGP session with the customer
Internet Access
Backbone as a Separate VPN
Internet Access As a Separate VPN

- This design realizes Internet access by using MPLS VPN features:

 An Internet gateway is connected as a CE router to the MPLS VPN backbone

 An Internet gateway shall not insert full Internet routing into the VPN; only the default route and the local (regional) routes can be inserted

 Every customer that needs Internet access is assigned to the same VPN as the Internet gateway
Internet Access as a Separate VPN

- The Internet backbone is separate from the VPN backbone
- VPN customers are connected to the Internet through a proper VPN/VRF setup
Redundant Internet Access

- Multiple CE-Internet routers can be used for redundancy
 - All CE-Internet routers advertise default route
 - Internet VPN will recover from CE-Internet router failure
 - Preferred default route can be indicated via MED attribute

- Default route should be advertised conditionally to achieve higher resilience
Redundant Internet Access

- Example: CE-Inet-A should advertise default route only if it can reach network 172.16.0.0/16 (upstream ISP core)
Limitations of Running an Internet Backbone in a VPN

- Drawbacks:
 - Full Internet routing cannot be carried in the VPN; default routes are needed that can lead to suboptimal routing
 - Internet backbones act as CE routers to the VPN backbone; implementing overlapping Internet + VPN backbones is tricky

- Benefits:
 - Supports all Internet access service types
 - Can support all customer requirements, including a BGP session with the customer, accomplished through advanced BGP setup
Internet Access using VRF Aware NAT
Internet Access using VRF-aware NAT

- If the VPN customers need Internet access without internet routes, then VRF-aware NAT can be used at the Internet-GW i.e. ASBR
- The Internet GW doesn’t need to have internet routes either
- Overlapping VPN addresses is not a problem
Internet Access using VRF-aware NAT

- VPN customers could be using ‘overlapping’ IP address i.e. 10.0.0.0/8
- Such VPN customers must NAT their traffic before using either “extranet” or “internet” or any shared* services
- PE is capable of NATting the VPN packets (eliminating the need for an extra NAT device)

* VoIP, Hosted Content, Management etc/
Internet Access using VRF-aware NAT

- Typically, inside interface(s) connect to private address space and outside interface connect to global address space

 NAT occurs after routing for traffic from inside-to-outside interfaces

 NAT occurs before routing for traffic from outside-to-inside interfaces

- Each NAT entry is associated with the VRF

- Works on VPN packets in the following switch paths: IP->IP, IP->MPLS and MPLS->IP
Internet Access using VRF-aware NAT

```
ip vrf green
  rd 3000:111
  route-target both 3000:1
ip vrf blue
  rd 3000:222
  route-target both 3000:2

router bgp 3000
  address-family ipv4 vrf green
    network 0.0.0.0
  address-family ipv4 vrf blue
    network 0.0.0.0

ip vrf green
  pool pool-green 24.1.1.0 24.1.1.254 prefix-length 24
  pool pool-blue 25.1.1.0 25.1.1.254 prefix-length 24

ip nat pool pool-green 24.1.1.0 24.1.1.254 prefix-length 24
ip nat pool pool-blue 25.1.1.0 25.1.1.254 prefix-length 24

ip nat inside source list vpn-to-nat pool pool-green vrf green
ip nat inside source list vpn-to-nat pool pool-blue vrf blue

ip access-list standard vpn-to-nat
  permit 10.1.1.0 0.0.0.255

ip route vrf green 0.0.0.0 0.0.0.0 217.34.42.2 global
ip route vrf blue 0.0.0.0 0.0.0.0 217.34.42.2 global
```

VRF specific Config

```
VRF-aware NAT Specific Config
```
Internet Access using VRF-aware NAT

- PE-ASBR removes the label from the received MPLS packets per LFIB
- Performs NAT on the resulting IP packets
- Forwards the packet

Traffic Flows

MPLS Backbone

IP Packet

MPLS Packet

NAT Table

<table>
<thead>
<tr>
<th>VRF IP Source</th>
<th>Global IP</th>
<th>VRF-table-id</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.1.1</td>
<td>24.1.1.1</td>
<td>green</td>
</tr>
<tr>
<td>10.1.1.1</td>
<td>25.1.1.1</td>
<td>blue</td>
</tr>
</tbody>
</table>

PE11

PE12

PE-ASBR

CE1

CE2

Blue VPN Site

Green VPN Site

Src=10.1.1.1\nDest=Internet

Label=30\nSrc=10.1.1.1\nDest=Internet

Label=40\nSrc=10.1.1.1\nDest=Internet

10.1.1.0/24

24.1.1.1

25.1.1.1