IPv6 Address Space Management Report of IPv6 Registry Simulation

Policy SIG 1 Sept 2004 APNIC18, Nadi, Fiji Geoff Huston

IPv6 Address structure

IPv6 Address structure

IANA to RIR Allocation size

/23 Allocation: Each allocation supports up to 512 /32 allocations

/12 Allocation: Each allocation supports up to 1M /32 allocations

/8 Allocation: Each allocation supports up to 17M /32 allocations

IANA to RIR Allocation size parameters

- Ensuring address aggregation outcomes within the parameters of:
 - Profile of IPv6 LIR / ISP requests
 - Chosen Host Density metric
 - Allocation address block lifetime
 - Reverse space management
 - Adopted RIR address pool management technique

IPv6 Registry simulation exercise

- Use recent RIR IPv4 allocation data to create a demand model of an IPv6 address registry
 - Assume a sequence of IPv6 transactions based on a demand model derived from the sequence of recorded IPv4 allocations
 - Convert IPv4 to IPv6 allocations by assuming an equivalence of an IPv4 end-user-assignment of a /32 with an IPv6 end-user-assignment of a /48
 - IPv4 uses a constant host density of 80% while IPv6 uses a HD-Ratio of 0.8
 - Use a minimum IPv6 ISP allocation unit of a /32

IPv4 / IPv6 Allocation equivalence table

IPv4 Allocation	IPv6 Allocation
/24	/32
/23	/32
/22	/32
/21	/32
/20	/32
/18	/32
/18	/31
/17	/30
/16	/29
/15	/28
/14	/27
/14	/26
/13	/25
/12	/24
/11	/23
/10	/22
/10	/21
/9	/20
/8	/19
<i>1</i> 7	/18
	/24 //23 //22 //21 //20 //18 //18 //17 //16 //15 //14 //14 //13 //12 //11 //10 //10 //9 //8

Allocation size simulation results

Management algorithm simulation

- Three algorithms have been compared
 - Sequential
 - Comparable to current IPv4 system, where each new allocation window is drawn from the remaining free pool in sequence
 - Sparse
 - Each new allocation subdivides the largest allocation window in half
 - Rate-Sparse
 - Each new allocation subdivides a window in half, where the selected window is the slowest growing allocation

Management algorithm simulation

Number of Fragmented Allocation

IANA to RIR Address block size

- <u>/20</u> block is smaller than the allocation window of some individual allocations
- <u>/16</u> block has an anticipated lifetime of 36 months of RIR allocations using current allocation framework
 - /16 would have a lifetime of < 12 months assuming an IPv4 NAT ratio of 2:1
- <u>/12</u> block has an anticipated lifetime of 36 months with minimal fragmentation under rate-managed sparse allocation, with NATless deployments

Thank you!

Questions

