IP in Smart Object Networks

Jeff Apcar, Distinguished Services Engineer, Cisco Systems

With acknowledgement to JP Vasseur Cisco Distinguished Engineer, Co-Chair IETF Roll Working Group, TAB Chair IPSO Alliance
Agenda

- A world of sensors
- Smart Objects
- Low Power Lossy Networks (LLN)
- 802.15.4 Low Power PAN
- Using IP for Smart Objects
- 6LoWPAN Working Group
- Roll Working Group
- Routing over Low Power Lossy Networks (RPL)
- Conclusion
A World of Sensors

- Mostly RS485 wired actuators/sensors
- Generally proprietary architectures for specific applications

- Predictive Maintenance
- Energy Saving Smart Grid
- High-Confidence Transport and Asset Tracking
- Enhanced Safety & Security
- Improve Productivity
- Improve Food and H₂O
- Intelligent Buildings
- Healthcare
- Smart Home S+CC

Enable New Knowledge

Predictive Maintenance

Energy Saving Smart Grid

High-Confidence Transport and Asset Tracking

Enhanced Safety & Security

Healthy

Predictive Maintenance

Energy Saving Smart Grid

High-Confidence Transport and Asset Tracking

Enhanced Safety & Security

Healthy

Predictive Maintenance

Energy Saving Smart Grid

High-Confidence Transport and Asset Tracking

Enhanced Safety & Security

Healthy
A World of Proprietary Protocols

- Many legacy networks use closed and proprietary protocols
 Each with different implementations at each layer (Physical, Link, Network)
 Many non-interoperable “solutions” addressing specific problems
 Resulting in different architectures and protocols

- Interoperability partially addressed (poorly) by protocol gateways
 Inherently complex to design, deploy and manage
 Results in inefficient and fragmented networks, QOS, convergence

- Similar situation to computer networks in the 1980s
 Islands of systems communicating using SNA, IPX, Appletalk, DECnet, VINES
 Interconnected using multiprotocol gateways
Standardise to Build The Internet of Things

- Next iteration of the Internet
 Standardise IP into sensors and other smart objects
 Any object or environmental condition can be monitored
 Expand the current Internet to virtually anything and everything

- Internet of Things (IoT)
 Pervasive and ubiquitous network which enables monitoring and control of physical environment by collecting, processing, and analyzing the data generated by Smart-Objects
Smart Objects
What is a Smart Object?

- A tiny and low cost computer that may contain:
 - A sensor that can measure physical data (e.g., temperature, vibration, pollution)
 - An actuator capable of performing a task (e.g., change traffic lights, rotate a mirror)
 - A communication device to receive instructions, send data or possibly route information

- This device is embedded into objects (to make them smart 😊)
 - For example, thermometers, car engines, light switches, gas meters

- Smart Objects enable many sophisticated applications and solutions
 - Smart+Connected Communities
 - Smart Grid and Energy Management
 - Home and Building Automation
 - Connected Health

- Smart Objects can be organised into networks
Characteristics of Smart Objects

- These devices are **highly constrained** in terms of
 - Physical size
 - CPU power
 - Memory (few tens of kilobytes)
 - Bandwidth (Maximum of 250 KB/s, lower rates the norm)

- **Power consumption is critical**
 - If battery powered then energy efficiency is paramount
 - Batteries might have to last for years

- **May operate in harsh environments**
 - Challenging physical environment (heat, dust, moisture, interference)

- **Wireless capabilities based on Low Power & Lossy Network (LLNs) technology**
 - Predominantly IEEE 802.15.4 (2.4 GHz and 900 MHz)
 - Newer RF technologies IEEE 802.15.4g (Smart Utility Network PHY)
Low Power Lossy Networks
What is a Low Power Lossy Network (LLN)?

- LLNs comprise a large number of highly constrained devices (smart objects) interconnected by predominantly wireless links of unpredictable quality.

- LLNs cover a wide scope of applications:

- Several IETF working groups and Industry Alliance addressing LLNs:
 - IETF - CoRE, 6Lowpan, ROLL
 - Alliances - IP for Smart Objects Alliance (IPSO)

World’s smallest web server
Characteristics of LLNs

- LLNs operate with a hard, very small bound on state
- In most cases LLNs optimised for saving energy
- Traffic patterns can be MP2P, P2P and P2MP flows
- Typically LLNs deployed over link layers with restricted frame-sizes
 - Minimise the time a packet is in the air hence the small frame size
 - The routing protocol for LLNs should be adapted for such links
- LLN routing protocols must consider efficiency versus generality
 - Many LLN nodes do not have resources to waste
IETF LLN Related Workgroups

- Application
 - CoRE
 - 6LoWPAN
 - ROLL

Constrained Restful Environments
Charter to provide a framework for resource-oriented applications intended to run on constrained IP networks.

IPv6 over Low power WPAN
Charter is to develop protocols to support IPv6 running over IEEE 802.15.4 low-power radio networks.

Routing over Low Power Lossy Networks
Charter focusses on routing issues for low power lossy networks.

Reuse work done here where possible
Invent where needed
IP for Smart Objects (IPSO) Alliance

- IPSO Alliance formed to drive standardisation and inter-operability
 - Create awareness of available and developing technology
- As of 2010 More than 65 members in the alliance
- Document use of new IP based smart object technologies
 - Generate tutorials, webinars, white papers and highlight use cases
 - Provide an information repository for interested parties
- Coordinate and combine member marketing efforts
- Support and organise interoperability events
 - COMPLIANCE program (Based on IPv6 forum)
- http://www.ipso-alliance.org
IEEE Wireless Standards

- 802.11 – Wireless Local Area Networks (WiFi)
 802.11a, 802.11b, 802.11g, 802.11n

- 802.15 – Wireless Personal Access Networks (WPAN)
 - Task Group 1 – Bluetooth (802.15.1)
 - Task Group 2 – Co-existence (802.15.2)
 - Task Group 3 – High Rate WPAN (802.15.3)
 - Task Group 4 – Low Rate WPAN (802.15.4 or 802.15 TG4)
 - Task Group 5 – Mesh Networking (802.15.5)

- 802.16 – Wireless Metropolitan Area Networks (WiMax)

- 802.20 – Mobile Broadband Wireless Access (Mobile-Fi) - Defunct

- 802.22 – Wireless Regional Access Network (WRAN)
 Utilise free space in the allocated TV spectrum
“The IEEE 802.15 TG4 was chartered to investigate a low data rate solution with multi-month to multi-year battery life and very low complexity. It is operating in an unlicensed, international frequency band. Potential applications are sensors, interactive toys, smart badges, remote controls, and home automation.”

http://www.ieee802.org/15/pub/TG4.html
IEEE 802.15 WPAN™ Task Group 4 (TG4) Charter
IEEE 802.15.4 Features

- Designed for low bandwidth, low transmit power, small frame size
 - More limited than other WPAN technologies such as Bluetooth
 - Low bit rate and packet size to ensure reasonably low packet error rates
 - Packet size (127 bytes) reflects minimal buffering capabilities in Smart Objects
 - Low power allows batteries to last for years

- Data rates of 250 kbps, 40 kbps, and 20 kbps

- Two addressing modes; 16-bit short (local allocation) and 64-bit IEEE (global allocation)

- Communicates over multiple hops
 - Range is in tens of metres, reduces transmission power

- 3 possible unlicensed frequency bands
 - (Europe 868-868.8 MHz – 3 chans, USA 902-928 MHz – 30 chans, World 2400-2483.5 MHz – 16 chans)
IEEE 802.15.4 Node Types

- **Full Function Device (FFD)**
 - Can operate as a PAN co-ordinator (allocates local addresses, gateway to other PANs)
 - Can communicate with any other device (FFD or RFD)
 - Ability to relay messages (PAN co-ordinator)

- **Reduced Function Device (RFD)**
 - Very simple device, modest resource requirements
 - Can only communicate with FFD
 - Intended for extremely simple applications
IEEE 802.15.4 Topologies

- Star Topology
 - All devices communicate to PAN co-ordinator which uses mains power
 - Other devices can be battery/scavenger
 - Single PAN co-ordinator exists for all topologies

- Mesh Topology
 - Devices can communicate directly if within range

- Cluster Tree
 - Higher layer protocols like RPL may create their own topology that do not follow 802.15.4 topologies
802.15.4 uses CSMA-CA

- **Carrier Sense Multiple Access with Collision Avoidance**
- **Wireless networks cannot detect collisions**
 - Fundamental difference from wired networks
- **Wired – CSMA/CD – Collision Detection**
- **Wireless – CSMA/CA – Collision Avoidance**
 - RX/TX antennas immediately next to each other
 - Hence RX can only see its own TX when transmitting
Using IP for Smart Objects
IP in Smart Object Networks

- Today’s computer networks are almost exclusively IP based
 - Provides end-to-end reliable connectivity
 - Brings scalability, flexibility and reliability
 - Supports wide a range of devices, transports and applications
 - Email, WWW, VOIP, Video, Collaboration

- Smart Object Networks standardising on IP
 - General consensus is that IP based Smart Objects networks are the future
 - Move away from proprietary and closed protocols
 - Solid standardisation base allows future innovation
 - Allows quick adoption of emerging applications
 - Allows the creation of the “Internet of Things”
IP is both an Architecture & Protocol

- It can meet all the requirements to support a Smart Object Network
- Based on open standards
 - IETF RFCs
- Flexibility in many dimensions
 - Support a wide range of media - Serial, SDH, Ethernet, DWDM, FR, ATM
 - Support a wide range of devices - From phones to routers
- Always favor global than local optimum
 - IP is capable of supporting many different applications; voice, video, data, mobile
- Secure
- Plug & Play
- Scalable
 - The Internet comprises billions of connected devices
IPv4 or IPv6

- The current Internet comprises several billion devices
 - Add to this growing 3G, 4G mobile devices
 - There is no scope for IPv4 to support Smart Object Networks

- Smart Objects will add tens of billions of additional devices

- IPv6 is the only viable way forward
 - Solution to address exhaustion
 - Stateless Auto-configuration thanks to Neighbour Discovery Protocol

- Some issues with IPv6 address size
 - Smart Object Networks use low power wireless with small frame size
 - Solution to use stateless and stateful header compression (6LoWPAN)
Conservative Connected Devices Projection

<table>
<thead>
<tr>
<th>World Population</th>
<th>Connected Devices</th>
<th>Connected Devices Per Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3 Billion</td>
<td>500 Million</td>
<td>0.08</td>
</tr>
<tr>
<td>6.8 Billion</td>
<td>12.5 Billion</td>
<td>1.84</td>
</tr>
<tr>
<td>7.2 Billion</td>
<td>25 Billion</td>
<td>3.47</td>
</tr>
<tr>
<td>7.6 Billion</td>
<td>50 Billion</td>
<td>6.58</td>
</tr>
</tbody>
</table>

Source: Cisco IBSG, 2010

Based on what we know is true today (Conservative)

More connected devices than people

World Population

Connected Devices

Connected Devices Per Person

Source: Cisco IBSG, 2010

Based on what we know is true today (Conservative)

More connected devices than people
Contiki + uIPv6 Code for Smart Objects

- Contiki is a memory efficient O/S for smart objects
 Open source operating system for the Internet of Things

- uIPv6 is world’s small certified stack for objects such as actuators and sensors
 uIPv6 does not require an O/S (such as Contiki)
 Able to run over any link layer (for example, 802.15.4)

- All IPv6 features (except MLD) are implemented from RFC4294

- Obtained IPv6 ready phase 1 logo

- Open source release http://www.sics.se/contiki

- Memory requirements for IPv6/6LoWPAN/802.15.4
 35K ROM 3K RAM (minimal O/S features)
 40KB ROM 10KB RAM (full O/S features)
6LoWPAN Working Group
What is 6LoWPAN?

- IPv6 over Low power Wireless Personal Area Networks
 An adaptation layer for IPv6 over IEEE 802.15.4 links

- Why do we need an adaption layer?
 IEEE 802.15.4 MTU is only 127 bytes, IPv6 minimum MTU is 1280 bytes
 IPv6 does not do fragmentation, left to end nodes or lower layers

- Performs 3 functions each with its own 6LoWPAN header
 IPv6 Header compression
 IPv6 packet fragmentation and re-assembly
 Layer 2 forwarding (also referred to as mesh under)

- RFC4919 defines the Problem Statement

- RFC4944 defines Transmission of IPv6 Packets over IEEE 802.15.4
 Improved header compression being worked on may deprecate RFC4944
Basic IPv6 Header

- Minimum size is 40 bytes (double that of IPv4)
- Can be extended by additional headers
- Fragmentation must be performed by end nodes
Typical 6LoWPAN Header Stacks

- 6LoWPAN headers included only when needed
 - IPv6 compression header
 - Fragmentation header (eliminated if single datagram can fit entire IPv6 payload)
 - Mesh or Layer 2 forwarding header (currently not used/implemented)

Worst case leaves only 81 bytes for headers and payload

<table>
<thead>
<tr>
<th>802.15.4 Header</th>
<th>IPv6 Header Compression</th>
<th>IPv6 Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>No IPv6 header</td>
<td>No IPv6 header compression</td>
<td>No IPv6 payload</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPv6 Fragmentation</th>
<th>Multiple L2 Hops</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes (Future)</td>
</tr>
<tr>
<td>No</td>
<td>Yes (Future)</td>
</tr>
</tbody>
</table>
What is ROLL?

- Routing Over Low power and Lossy networks (2008)
 Co-chairs: JP Vasseur (Cisco), David Culler (Arch Rock)

- Mission: To define routing solutions for LLNs

- Application specific LLN routing requirements developed
 - Industrial (RFC5673)
 - Urban (RFC5548),
 - Home Automation (RFC5826)
 - Building Automation (RFC5867)

- Specifying the routing protocol for smart object networks
 Routing Protocol for LLNs (RPL) adopted as WG document
Where Should Routing Take Place?

- Historically, a number of interesting research initiatives on WSN: Work on Wireless Sensors Network focussed on algorithms … not architecture.
- Most work assumed the use of MAC addresses:
 - Layer 2 “routing” (mesh-under).
- Support of multiple PHY/MAC is a MUST:
 - IEEE 802.15.4, Low Power Wifi, Power Line Communications (PLC).
- Use IP to route:
 - Supports multiple PHY/MAC
 - Moves from mesh-under (L2) to router-over(L3)
Characteristics for Smart Object Routing

<table>
<thead>
<tr>
<th>Current Internet</th>
<th>Smart Object Networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodes are routers</td>
<td>Nodes are sensor/actuators and routers</td>
</tr>
<tr>
<td>IGP with typically few hundreds of 100 nodes</td>
<td>An order of magnitude larger in nodes</td>
</tr>
<tr>
<td>Links and Nodes are stable</td>
<td>Links are highly unstable</td>
</tr>
<tr>
<td></td>
<td>Nodes fail more frequently</td>
</tr>
<tr>
<td>Node and link bandwidth constraints are generally non-issues</td>
<td>Nodes & links are high constrained</td>
</tr>
<tr>
<td>Routing is not application aware</td>
<td>Application-aware routing, in-Band processing is a MUST</td>
</tr>
</tbody>
</table>
Technical Challenges

- Energy consumption is a major issue (battery powered sensors/actuators)
- Limited processing power
- Very dynamic topologies
 - Link failure (LP RF)
 - Node failures (triggered or non triggered)
 - Node mobility (in some environments),
- Data processing usually required on the node itself
- Sometimes deployed in harsh environments (e.g. Industrial)
- Potentially deployed at very large scale
- Must be self-managed (auto-discovery, self-organizing networks)
Current Routing Protocols

- The current IGPs (OSPF, ISIS) rely upon static link metrics
 - Used to create best/shortest path to destination
 - No account taken of node/router status (high CPU, hardware failures)

- Not suitable for the dynamic nature of an LLN with many variables
 - Wireless Signal Strength and Quality
 - Node resources such as residual energy
 - Link throughput and reliability

- IGP needs the ability to consider different metric/constraint categories
 - Node vs Links
 - Qualitative vs Quantitative
 - Dynamic vs Static
Routing over low Power Lossy networks (RPL)
RPL - Routing Protocol for LLNs

- RPL is an extensible proactive IPv6 distance vector protocol
 - Builds a Destination Oriented Directed Acyclic Graph (DODAG)
 - RPL supports shortest-path constraint based routing applied to both links and nodes
 - Supports MP2P, P2MP and P2P between devices (leaves) and a root (border router)

- RPL specifically designed for “Lossy” networks
 - Should not be categorised as a WSN routing protocol
 - Agnostic to underlying link layer technologies (802.15.4, PLC, Low Power Wireless)

- RPL supports different LLN application requirements
 - RFC 5548 (Urban) RFC 5673 (Industrial) RFC 5826 (Home) RFC 5867 (Building)

 - Currently on last call implementation 18 (Feb 2011)
What is a Directed Acyclic Graph?

In the context of routing, a DAG is formed by a collection of vertices (nodes) and edges (links), each edge connecting one node to another (directed) in such a way that it is not possible to start at Node X and follow a directed path that cycles back to Node X (acyclic).

A Destination Oriented DAG is a DAG that comprises a single root node.
RPL Terminology

RPL Instance
Consists of one or more DODAGs sharing SAME service type (Objective Function)
Identified by RPL INSTANCE ID

Direction Oriented DAG (DODAG)
Comprises DAG with a single root

DODAG Root
Identified by DODAG ID

Node
(OF configured)

DODAG parent
to adjacent “4”s

Sub-DODAG

Non-LLN Network
(IPv6 Backbone)

UP (DAO Messages)
Rank increases
Towards DODAG

TOWARDS DAO Messages)
Rank decreases
Towards DODAG

Rank = n

Rank > n

Sub-DODAG

DODAG

Siblings

DODAG

DODAG Root
(Typically an LBR - LLN Border Router)
RPL Instances

- RPL can form multiple instances
 - Each instance honours a particular routing objective/constraint
 - Instance consists one or more DODAGs derived from the same objective function
 - Nodes select a parent (towards root) based on metric, OF and loop avoidance

- Allows upwards and downwards routing (from DODAG root)

- Trickle timers used to suppress redundant messages
 - Saves on energy and bandwidth (Like OSPF exponential backoff)

- Under-react is the rule
 - Local repair preferred versus global repair to cope with transient failures
RPL DODAGs

- RPL enables nodes to discover each other and form DODAGs

 Use special ICMPv6 control messages

- Each root uses a unique \{DODAG ID\} to identify itself within an RPL Instance

- Routing performed over the DODAG using distance vector techniques

- Every hop to the root MUST have an alternate path

 (Quite possible with Wireless/Radio Networks)

- A DODAG will ensure nodes always have a path up towards the root

- A DODAG is identified by \{RPL Instance ID, DODAG ID\}
Objective Function (OF)

- An OF defines how nodes select paths towards DODAG root
 Dictates rules on how nodes satisfy a optimisation objective (e.g., minimise latency)
 Actual routing metrics and constraints carried ICMPv6 control messages

- A rank in the DODAG reflects its distance from the root
 \[\text{Rank} = \text{Rank is higher as distance increases from DODAG root} \]

- There is a single Objective Function per RPL Instance
 An instance can comprise one or more DODAGs (share same OF)

ICMPv6 RPL Control Messages

- **DIO** - DODAG Information Object
 Used for DODAG discovery, formation and maintenance

- **DIS** - DODAG Information Solicitation Message
 Used to probe for DIO messages from RPL nodes

- **DAO** - DODAG Destination Advertisement Object
 Propagates prefix availability from leaves up the DODAG
 Supports P2MP and P2P traffic

- **DAO-ACK** - DODAG Destination Advertisement Object
 Unicast by a DAO recipient in response to a unicast DAO message

Most RPL control messages have scope of a link

DAO/DAO-ACK in non-storing mode passes over multiple hops
RPL Identifiers

- Four values used to identify and maintain DODAG topology
 - Nodes in a particular topology will belong to the same DODAG version
 - Rank within \{(RPL Instance ID, DODAG ID, DODAG Version)\} scope

Identifies unique DODAG topology within RPL Instance

{16, 25, Version} → Topology Event → {16, 25, Version+1}
RPL Supported Traffic Flows

- **Multipoint to Point**
 - DIO messages

- **Point to Multipoint**
 - DAO messages
 - Subset of devices

- **Point to Point**
 - Storing Mode, DAO
 - Fully Stateful
 - Non-Storing Mode, DAO
 - Source routed to root
DODAG Neighbours and Parent Selection (Upward Routes)

- **Upward route discovery**
 - Comprises three logical sets of link-local nodes
 - Neighbours are learnt from DIO advertisements

- **Candidate Neighbour Set**
 - Subset of nodes reachable via link-local multicast
 - Elements in the set may belong to different DODAG versions

- **Parent Set**
 - Consists of nodes with a higher rank (lower #)
 - Elements in the set must belong to SAME DODAG version

- **Preferred Parent**
 - Preferred next-hop to the DODAG Root
 - Multiple preferred parents possible if ranks are equal
RPL Security

- RPL has three basic security modes
- Unsecured Mode
 Relies on underlying link layer security mechanisms
- Pre-Installed Mode
 RPL nodes use same pre-shared-installed key to generate secure messages
- Authenticated mode
 Uses pre-installed key to allow RPL node to join as a leaf only
 To function as a router requires obtaining a key from authentication authority
Routing Metrics and Constraints in LLNs

 - Specifies a set of link and node LLN routing metrics and constraints
- Constraints provide a path “filter” for more suitable nodes and links
- Metrics are the quantitative value used to evaluate the path cost
- Concept of routing objects that can be treated as a metric or a constraint
 - Low pass thresholds used to avoid unnecessarily recomputing DAG
- Computing dynamic metrics takes up power and can change rapidly
 - Solved by abstracting number of discrete values to a metric

<table>
<thead>
<tr>
<th>Link Quality Metric</th>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Low</td>
</tr>
</tbody>
</table>

Tradeoff
- Reduced accuracy vs overhead and processing efficiency
Routing Metrics in LLNs

<table>
<thead>
<tr>
<th>Node Metrics</th>
<th>Link Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node State and Attributes Object</td>
<td>Throughput Object</td>
</tr>
<tr>
<td>Purpose is to reflects node workload (CPU, Memory…)</td>
<td>Currently available throughput (Bytes per second)</td>
</tr>
<tr>
<td>“O” flag signals overload of resource</td>
<td>Throughput range supported</td>
</tr>
<tr>
<td>“A” flag signal node can act as traffic aggregator</td>
<td></td>
</tr>
<tr>
<td>Node Energy Object</td>
<td>Latency</td>
</tr>
<tr>
<td>“T” flag: Node type: 0 = Mains, 1 = Battery, 2 = Scavenger</td>
<td>Can be used as a metric or constraint</td>
</tr>
<tr>
<td>“I” bit: Use node type as a constraint (include/exclude)</td>
<td>Constraint - max latency allowable on path</td>
</tr>
<tr>
<td>“E” flag: Estimated energy remaining</td>
<td>Metric - additive metric updated along path</td>
</tr>
<tr>
<td>Hop Count Object</td>
<td>Link Reliability</td>
</tr>
<tr>
<td>Can be used as a metric or constraint</td>
<td>Link Quality Level Reliability (LQL)</td>
</tr>
<tr>
<td>Constraint - max number of hops that can be traversed</td>
<td>0=Unknown, 1=High, 2=Medium, 3=Low</td>
</tr>
<tr>
<td>Metric - total number of hops traversed</td>
<td>Expected Transmission Count (ETX)</td>
</tr>
<tr>
<td></td>
<td>(Average number of TX to deliver a packet)</td>
</tr>
<tr>
<td>Link Colour</td>
<td></td>
</tr>
<tr>
<td>Metric or constraint, arbitrary admin value</td>
<td></td>
</tr>
</tbody>
</table>
DODAG Example

- DIO messages are propagated from the DODAG root

Geographic Layout

DODAG Topology

- LQL=3 (Poor)
- LQL=2 (Fair)
- LQL=1 (Good)

Battery powered

IPv6 Core
OF: Use High Quality Links, Avoid battery powered nodes

DODAG Topology

IPv6 Core

LQL=3 (Poor)
LQL=2 (Fair)
LQL=1 (Good)
Battery Powered

© 2011 Cisco and/or its affiliates. All rights reserved.
OF: Low Latency Paths only

DODAG Topology

LQL=3 (Poor)
LQL=2 (Fair)
LQL=1 (Good)
Battery Powered

IPv6 Core
Data path validation used to check for loops (Simple mechanism)
IPv6 options header carries rank of transmitter

If node receives packet with rank <= to its own, drop packet
Detection happens when link is actually used.
RPL Summary

- RPL is a foundation of the Internet of Things
 - Open standard to meeting challenging requirements
- Promising technology to enable IP on many billions of smart objects
- Very compact code
 - Supports wide range of media and devices
- Cisco Implementation
 - Passed execute commit, planned for IOS 15.2PI16
 - In roadmap for SGBU nextgen routers
- Standardisation Status (Dec 2010)
 - Passed WG and IETF last call
 - Adopted by several alliances: Zigbee/IP, Wavenis, IEEE P1901.2 (Power line comms)
Conclusion

- Smart Objects have several major applications
 - Smart Grid, Green, Industrial, Connected building/homes, Smart Cities
 - There is a lot of momentum around using IP

- Major progress in several key areas
 - IP-based technologies: 6Lowpan, RPL and now CoRE
 - IPSO alliance
 - Adoption of IP by several other SDOs/alliance: Zigbee/IP for SE2.0, Bacnet, ...

- Internet of Things is coming
 - Current Internet = Some things (computers and hosts)
 - Next Internet = Everything!
Recommended reading

- Covers the trends in Smart Objects
- RPL protocol
- Detailed application scenarios
- Written by
 - JP Vasseur (Cisco DE)
 - Adam Dunkels (Inventor of Contiki O/S, uIPv6)